Планетарная передача схема и принцип действия


Планетарная передача — вид зубчатой передачи, применяемой в механических и автоматических трансмиссиях. Помимо преобразования вращения «планетарка» способна суммировать и раскладывать мощности. Зная о планетарном механизме: что это такое, как работает, по каким критериям оценивают редуктор, станет понятно устройство и характеристики АКПП. В случае поломки расчёт передачи поможет выбрать надёжный и долговечный механизм.

Устройство и принцип работы

Планетарный механизм — это конструкция из зубчатых колёс, перемещающихся относительно центра. По центральной оси расположены колёса разного диаметра:

  • малое солнечное с внешними зубцами;
  • большое коронное или эпицикл с внутренними зубцами.

Между колёсами передвигаются сателлиты. Их вращение напоминает движение планет Солнечной системы. Оси сателлитов механические соединены на водиле, которое вращается относительно центральной оси.

Устройство простого планетарного блока:

  • 1 эпицикл;
  • 1 солнечное колесо;
  • 1 водило.

Планетарный механизм собирают в каскады из двух и более звеньев на одном валу для получения широкого диапазона передач. Главной кинематической характеристикой зубчатой передачи является передаточное отношение.

Принцип работы планетарной коробки заключается в блокировке одного из основных элементов и передаче вращения через ведущее колесо. Для остановки элемента применяют тормозные ленты, блокировочные муфты, конические шестерни. Передаточное отношение меняется в зависимости от схемы закрепления. Описать принцип действия планетарного механизма удобнее на примере:

  1. Корона блокируется.
  2. Вал подаёт крутящий момент на солнце.
  3. Вращение солнца заставляет планеты обкатываться вместе с ним.
  4. Водило становится ведомым, сообщая пониженную передачу.

Управляя элементами простой «планетарки», получают разные характеристики:

Передача Как работает планетарная коробка в АКПП
1Солнце подаёт вращение на водило, корона двигается в противоположную сторону.
2Корона подаёт вращение на водило, солнце зафиксировано.
3Ведущее водило передаёт вращение солнцу. Корона заблокирована.
4Водило двигает корону. Солнце зафиксировано.
Задний ходВодило заблокировано. Солнечное колесо вращается, планеты обкатывают и двигают корону в противоположную сторону.

Кпд η простой передачи достигает 0,97.

Планетарный ряд с одной степенью свободы становится планетарной передачей. Две степени образуют дифференциал. Дифференциал складывает моменты на ведомом колесе, поступающие от основных ведущих звеньев.

Читать

Что лучше и надежнее, вариатор или автомат

Из чего состоит и как работает планетарная втулка

Устройство планетарных втулок достаточно сложное и напоминает механизм автомобильной коробки передач. Для наглядности покажем стандартную схему для всей планетарной передачи:

Желтым цветом изображена солнечная шестерня. «Солнышко» жестко закреплено на оси заднего колеса велосипеда. Именно с ней зацепляются обозначенные синим цветом планетарные шестеренки. Для их фиксации используется «водило» (зеленый цвет). Эта деталь не позволяет сателлитам – так иначе можно называть планетарные шестерни – разъезжаться и сцепляться друг с другом, а также определяет их направление движения.

Довершает механизм эпициклическая шестерня, которая вращается за счет педалирования. На рисунке она показана красным цветом.

Звездочка сопрягается с механизмом втулки с помощью шлицевого привода, исполнительного механизма втулки. При изменении передачи он изменяет скорость вращения водила относительно кольцевой шестерни, благодаря чему и достигается подстройка велосипеда под угол направления дороги и регулируется его скорость.

Интересная особенность такого типа механизма – это работа в качестве редуктора. Солнечная шестерня играет роль неподвижного элемента, эпицикл – ведомого элемента цепи, водило замыкается на корпус втулки. Для примера рассмотрим, как работает механизм планетарной передачи на простой трехскоростной планетарке:

  • Пониженная передача. Кольцевая шестерня опережает водило за счет его зацепления корпуса планетарной втулки. Передаточное отношение меньше единицы и составляет 0.733.
  • Главная передача. Крутящий момент с эпицикла передается на втулку за счет зацепления ее с планетаркой. Иначе говоря, со втулкой соединено не водило, как на первой передаче, а звездочная шестерня. Что происходит при этом? Втулка вращается быстрее водила, а для достижения максимальной скорости понадобится больше усилий по сравнению с пониженной передачей.
  • Передаточное число повышенной, или третьей, передачи больше единицы, и для трехскоростных велосипедов оно составляет 1.364. Направление движения водила и втулки противоположны, благодаря чему достигается ее ускорение по сравнению с главной передачей.
  • Для планетарных втулок с 5, 7 и т.д. скоростями диапазон передаточных отношений выше, чем у трехскоростной за счет большего количества шестеренчатых механизмов. Принцип работы многоскоростных и простых втулок будет одинаковым. Разница только в том, что у каждой планетарной составляющей будут свои фиксированные (как у 3-х ступенчатой планетарки) значения отношений передач, а в целом у механизма их будет в несколько раз больше.

Разновидности планетарных передач

По количеству ступеней планетарные механизмы разделяют на:

  • однорядные;
  • многорядные.

Планетарная передача из одной солнечной шестерни, одновенцовых сателлитов, водила и эпицикла будет однорядной. Замена сателлитов на двухвенцовые усложняет конструкцию, делая её двухрядной.

Многоступенчатая планетарная коробка передач — это последовательно установленные однорядные блоки. Такая схема позволяет суммировать передаточные числа и получать большие значения. 4-скоростные АКПП состоят из двухрядных планетарных конструкций, 8-скоростные — из четырёхрядных.

В АКПП применяют схемы, названные в честь изобретателей:

  • Механизм Уилсона представляет собой трёхрядную конструкцию, в которой соединены корона первого, водило второго и корона третьего рядов. Количество передач — 5 прямых и 1 задняя.
  • Механизм Лепелетье состоит из 3 соосно расположенных простых планетарных передач. Количество передач — 6 прямых и 1 задняя.
  • Схема Симпсона — 2 редуктора с общей солнечной шестернёй. Водило второго ряда оборудовано тормозом. Корона первого ряда и солнце через две блокировочные муфты жёстко соединены с ведущим валом. Механизм реализует режимы: нейтраль; 1,2,3 передачи; задний ход.

По типу зубчатых конструкций планетарные редукторы делятся на:

  • цилиндрические;
  • конические;
  • волновые;
  • червячные.

Разные типы применяют для передачи момента между валами, расположенными параллельно или под углом. А также в механизмах, требующих низкой или высокой кинематической характеристики.

Солнечная шестерня в велосипедах

Планетарные втулки сегодня в велосипедах ставятся туда, куда прежде ставили звездочки для байка для регулирования передач. В спортивных велосипедах каждая звездочка на велосипед отвечает за свою передачу скоростей. Более простая задняя планетарная втулка, которая работает на солнечной шестерне, ставится на велосипеды для города, а также на туристические велосипеды.

Как было сказано, задняя планетарная втулка более популярна, чем передняя. В первую очередь, это определяется особенностью крепления велосипедной цепи и классической установки звездочки на велосипед. Но если вы хотите переделать свой байк из обычного в электрический, то вам придется столкнуться с таким изобретением как мотор-колесо. Ставится оно обычно на переднюю вилку (хотя можно поставить и на заднюю, и даже заменить оба колеса, сделав велосипед полноприводным), одна из важных частей мотор-колеса — планетарный редуктор, в основу которого так же положена шестерня солнечная.

Изначально мотор-колёса были иного принципа, но требования удешевления из-за возрастания массовости спроса на электровелосипеды привело к тому, что именно роторная передача, основанная на планетарном принципе, стала наиболее выгодной системой генерации энергии движения и распределения ее. Это решение увеличивает статическую тягу при уменьшении веса колеса, но при этом становится более шумным сам мотор и усиливаются вибрации от высоких частот, передающиеся на раму. На текущий момент основная часть колес с мотором до 500 Ватт — редукторные. Это сделало электровелосипеды более шумными и тяжелыми, но резко снизило стоимость конструкции. Однако, при установке такого планетарного редуктора нужно проследить, чтобы допустимые вибрации не превышали норму, иначе это отразится на сроке службы рамы.

Характеристики основных разновидностей этого устройства

В конструкции планетарного ряда АКПП применяют различные типы зубчатых передач. Выделяют три основные наиболее распространенные: цилиндрические, конические и волновые.

Цилиндрические

Зубчатые механизмы передают момент между параллельными валами. В конструкцию цилиндрической передачи входит две и более пар колёс. Форма зубьев шестерней может быть прямой, косой или шевронной. Цилиндрическая схема простая в производстве и действии. Применяется в коробках передач, бортовых редукторах, приводах. Передаточное число ограничено размерами механизма: для одной колёсной пары достигает 12. КПД — 95%.

Читать

Что делать и как на автомате выехать из сугроба или из грязи если застрял

Конические

Колёса в конической схеме преобразуют и передают вращение между валами, расположенными под углом от 90 до 170 градусов. Зубья нагружены неравномерно, что снижает их предельный момент и прочность. Присутствие сил на осях усложняет конструкцию опор. Для плавности соединения и большей выносливости применяют круговую форму зубьев.

Производство конических передач требует высокой точности, поэтому обходится дорого. Угловые конструкции применяются в редукторах, затворах, фрезерных станках. Передаточное отношение конических механизмов для техники средней грузоподъёмности не превышает 7. КПД — 98%.

Волновые

Во волновой передаче отсутствуют солнечная и планетные шестерни. Внутри коронного колеса установлено гибкое зубчатое колесо в форме овала. Водило выступает в качестве генератора волн, и выглядит в виде овального кулачка на специальном подшипнике.

Гибкое стальное или пластмассовое колесо под действием водила деформируется. По большой геометрической оси зубья сцепляются с короной на всю рабочую высоту, по малой оси зацепление отсутствует. Движение передаётся волной, создаваемой гибким зубчатым колесом.

Во волновых механизмах КПД растёт вместе с передаточным числом, превышающим 300. Волновая передача не работает в схемах с кинематической характеристикой ниже 20. Редуктор выдает 85% КПД, мультипликатор — 65%. Конструкция применяется в промышленных роботах, манипуляторах, авиационной и космической технике.

Достоинства и недостатки планетарных передач

Планетарная передача выигрывает у простых зубчатых механизмов аналогичной мощности компактным размером и массой меньшей в 2 — 3 раза. Используя нескольких планетных шестерней, достигается зацепление зубьев на 80%. Нагрузочная способность механизма повышается, а давление на каждый зубец уменьшается.

Кинематическая характеристика планетарного механизма доходит до 1000 с малым числом зубчатых колёс без применения многорядных конструкций. Помимо передачи планетарная схема способна работать как дифференциал.

За счёт соосности валов планетарного механизма, компоновать машины проще, чем с другими редукторами.

Применение планетарного ряда в АКПП снижает уровень шума в салоне автомобиля. Сбалансированная система имеет высокую вибропрочность за счет демпфирования колебаний. Соответственно снижается вибрация кузова.

Недостатки планетарного механизма:

  • сложное производство и высокая точность сборки;
  • в сателлиты устанавливают подшипники, которые выходят из строят быстрее, чем шестерня;
  • при повышении передаточных отношений КПД падает, поэтому приходится усложнять конструкцию.

Читать

АКПП на машине дергается при переключении передач, ощущаются толчки и рывки

Недостатки планетарных втулок

  1. Самый главный минус – они дороже, чем обычная система переключения передач. Но с учетом того, что их уже не нужно обслуживать в дальнейшем – стоимость эксплуатации велосипеда будет значительно ниже.
  2. Маленькое общее передаточное отношение.У обычных переключателей передаточное отношение в среднем 550%. Это значит, что за один оборот педалей на самой высокой передаче велосипед проедет в 5,5 раз большее расстояние, чем на самой низкой передаче.У планетарных втулок это соотношение порядка 300%. На них сложно будет преодолевать крутые подъемы и разгоняться до высоких скоростей.Хотя прогресс не стоит на месте, и инженеры велосипедных фирм работают над улучшением выпускаемых моделей. Уже сейчас есть хорошие 7, 11 и даже 14 скоростные варианты.
  3. Они тяжелее.Тут то же не все однозначно. Да, сама планетарная втулка тяжелее аналогичной втулки с кассетой для горного многоскоростного велосипеда. Но, ставя её, Вы так же снимаете с велосипеда все ненужное оборудование для переключения передач (две передних звездочки, оставляя только одну, одну ручку переключения передач, тросики, механизмы переброски цепи и т.д.) Вместе с этим отпадают вопросы по их обслуживанию. Да и, в конце концов, если Вы не веломаньяк по весу, то лишние полкило для городского велосипеда не делают никакой погоды.
  4. Ремонт их в домашних условиях слишком сложен. Для нашего человека нет неремонтируемых механизмов, но отремонтировать планетарную втулку значительно сложнее, чем обычный переключатель скоростей. Правда и ломаются они ну очень уж редко.
  5. Не подходят для скоростных гонок и агрессивной езды.
  6. Планетарные втулки нельзя использовать с эксцентриковыми зажимами оси заднего колеса. Это объясняется тем, что если ось слабо крепится к дропаутам, то она может провернуться и сломать саму втулку или раму велосипеда.
  7. По сравнению с обычными системами переключения скоростей в планетарных втулках из-за того, что много зубчатых передач, ниже КПД и больше потерь энергии велосипедиста на трение. Считается, что их эффективность составляет 92%, по сравнению с 98% для обычных переключателей.

Передаточное число планетарных передач

Передаточным называют отношение частоты ведущего вала планетарной передачи к частоте ведомого. Визуально определить его значение не получится. Механизм приводится в движение разными способами, а значит передаточное число в каждом случае различно.

Для расчёта передаточного числа планетарного редуктора учитывают число зубьев и систему закрепления. Допустим, у солнечной шестерни 24 зуба, у сателлита — 12, у короны — 48. Водило закреплено. Ведущим становится солнце.

Сателлиты начнут вращаться со скоростью, передаваемой солнечной шестернёй. Передаточное отношение равно: -24/12 или -2. Результат означает, что планеты вращаются в противоположном направлении от солнца с угловой скоростью 2 оборота. Сателлиты обкатывают корону и заставляют её обернуться на 12/48 или ¼ оборота. Колёса с внутренним закреплением вращаются в одном направлении, поэтому число положительное.

Общее передаточное число равно отношению числа зубьев ведущего колеса к количеству зубьев ведомого: -24/48 или -1/2 оборота делает корона относительно солнца при зафиксированном водиле.

Если водило станет ведомым при ведущем солнце, то передаточное отношение: (1+48/24) или 3. Это самое большое число, какое способна предложить система. Самое маленькое отношение получается при фиксировании короны и подачи момента на водило: (1+/(1+48/24)) или 1/3.

Передаточные числа простой планетарной схемы: 1,25 — 8, многоступенчатой: 30 — 1000. С ростом кинематической характеристики КПД снижается.

Планетарная муфта сцепления с бесступенчатым регулированием жесткости упругого элемента

Изобретение относится к машиностроению и может быть использовано в трансмиссиях тракторов и дорожно-строительных машин. Планетарная муфта сцепления с бесступенчатым регулированием жесткости упругого элемента содержит связанный с двигателем планетарный редуктор, пневмогидравлический аккумулятор, гидронасос, механически связанный с солнечной шестерней редуктора, и гидрораспределитель. Муфта снабжена дополнительной цилиндрической пневмокамерой, соединенной трубопроводом с воздушной полостью пневмогидравлического аккумулятора. Пневмокамера имеет разделительный поршень с уплотнительными кольцами и перепускными клапанами, каждый из которых выполнен в виде стального шарика, обеспечивающего открытие клапана при давлении 0,15-0,2 МПа. Поршень имеет возможность свободного перемещения внутри камеры, а шайба-разобщитель устанавливает требуемое крайнее его положение для регулирования жесткости муфты. Достигается расширение кинематических возможностей муфты. 1 ил.

Изобретение относится к транспортному машиностроению и может быть использовано в трансмиссиях тракторов и дорожно-строительных машин, работающих в условиях неустановившихся режимов движения.

Известен гидрообъемный ходоуменьшитель самоходной машины, содержащий зубчатый понижающий редуктор, последовательно установленный в кинематической цепи трансмиссии, связанную с редуктором гидромашину постоянного рабочего объема, в напорной гидролинии которой установлен регулятор потока с органом управления, гидробак (авторское свидетельство SU №1482829 A1, М. кл. B60K 17/10. Гидрообъемный ходоуменьшитель самоходной машины. Заявлено 16.09.1987; Опубл. 30.05.1989, Бюл. №20).

Недостатком известной конструкции является ее сложность, отсутствие возможности демпфирования и изменения рабочей характеристики привода.

Известна трансмиссия транспортного средства, содержащая связанный с двигателем планетарный редуктор, гидроаккумулятор, гидронасос, связанный механически с одним из звеньев планетарного редуктора и распределитель, первая линия которого сообщена с нагнетательной магистралью гидронасоса, а вторая — со сливом (авторское свидетельство SU №1592173 A1, М. кл. B60K 17/10. Трансмиссия транспортного средства. — Заявлено 12.12.1988; Опубл. 15.09.1990, Бюл. №34).

Недостатком указанной конструкции является невозможность предохранения двигателя от полной остановки.

Известно устройство для снижения жесткости трансмиссии транспортного средства, взятое за ближайший аналог, содержащее планетарную передачу, реактивное звено которой соединено с масляным насосом, подключенным к всасывающей и напорной магистралям, нагнетающим масло в пневмогидроаккумулятор, коробку передач, соединенную с ведомым валом планетарной передачи, масляный бак. (авторское свидетельство SU №1062035 A, М. кл. B60K 17/10. Устройство для снижения жесткости трансмиссии транспортного средства. — Заявлено 07.09.1982; Опубл. 23.12.1983, Бюл. №47).

Недостатками данного устройства, принятого в качестве ближайшего аналога, является сложность конструкции гидравлической системы. Наличие трех клапанов в одной гидролинии не сможет обеспечить плавное изменение потока жидкости в демпферном устройстве. Медленное опорожнение пневмогидравлического аккумулятора через гидронасос задает ему обратное вращение, ухудшая режим переключения передач. Накопленная энергия в пневмогидравлическом аккумуляторе не возвращается в трансмиссию транспортного средства.

Задача, на решение которой направлено заявленное изобретение, — повышение эффективности использования машинно-тракторного агрегата за счет снижения износа деталей трансмиссии, устранения динамических нагрузок в силовой передаче путем плавного изменения передаваемого крутящего момента и расширение функциональных возможностей при установке планетарной муфты сцепления с регулируемой жесткостью в трансмиссии.

Технический результат заключается в расширении кинематических возможностей, снижении колебаний внешней тяговой нагрузки, увеличении долговечности муфты и улучшении динамических характеристик транспортного средства при трогании и разгоне.

Указанный технический результат достигается тем, что известная планетарная муфта сцепления с бесступенчатым регулированием жесткости упругого элемента, содержащая связанный с двигателем планетарный редуктор, пневмогидравлический аккумулятор, гидронасос, механически связанный с солнечной шестерней редуктора, и гидрораспределитель, а согласно изобретению она снабжена дополнительной цилиндрической пневмокамерой, трубопроводом соединенной с воздушной полостью пневмогидравлического аккумулятора, которая имеет разделительный поршень с уплотнительными кольцами и перепускными клапанами, каждый из которых выполнен в виде стального шарика, прижатого пружиной к седлу и обеспечивающего открытие клапана при давлении 0,15-0,2 МПа, при этом поршень имеет возможность перемещения внутри камеры, а шайба-разобщитель устанавливает требуемое крайнее его положение для регулирования жесткости муфты благодаря наличию фиксатора.

Изобретение поясняется чертежом, где схематично представлена планетарная муфта сцепления с бесступенчатым регулированием жесткости упругого элемента.

Сведения, подтверждающие возможность реализации заявленного изобретения, заключаются в следующем.

Предлагаемая муфта состоит из коронной шестерни 1, которая болтами крепится к маховику 2. Водило 3 планетарного механизма является его выходным валом 4, соединяющимся шлицами с ведомым валом коробки передач. С помощью сателлитов 5 водило связано с коронной 2 и солнечной 6 шестернями. Солнечная шестерня 6 входит в зацепление с шестерней привода гидронасоса 7, который соединен всасывающей магистралью 8 с гидробаком 9, а нагнетательной магистралью 10 — с гидрораспределителем 11. Он сливной магистралью 12 соединен с гидробаком 9, а напорной магистралью 13 — с пневмогидравлическим аккумулятором 14, связанным магистралью 15 с дополнительной цилиндрической пневмокамерой 16 цилиндра-регулятора 17, имеющего поршень 18 с уплотнительными кольцами 19, внутри которого расположены перепускные клапаны 20 и 21, перемещение его ограничивается шайбой-разобщителем 22, положение которой устанавливается рычагом 23 и блокируется фиксатором 24.

Работа предлагаемой муфты в приводе трансмиссии транспортного средства осуществляется следующим образом.

Крутящий момент от маховика 1 передается на коронную шестерню 2 планетарного механизма. Она начинает вращаться и передает вращение на сателлиты 5, приводя в движение солнечную шестерню 6 и привод масленого насоса 7, который, вращаясь, закачивает в его всасывающую магистраль 8 масло из бака 9 гидросистемы транспортного средства. Масло под давлением поступает в нагнетательную магистраль 10 и подходит к распределителю 11. Если же распределитель закрыт, то масло уходит на слив в магистраль 12, также соединенную с гидросистемой транспортного средства. При закрытом положении распределителя 11 муфта находится в выключенном положении, транспортное средство не приводится в движение, даже если включена передача. Если же распределитель 11 открыт, то масло поступает по напорной магистрали 13 в пневмогидравлический аккумулятор 14. Насос подает масло до тех пор, пока давление масла не достигнет величины, уравновешивающейся давлением в гидроаккумуляторе. В этом случае насос 7 остановится, в результате этого остановится и солнечная шестерня 6, но при этом сателлиты 5 начнут вращаться вокруг своей оси, обегая солнечную шестерню 6, и будут передавать момент на водило 3 и вал силовой передачи 4. Транспортное средство начнет поступательное движение вперед. При увеличении крюковой нагрузки возникает необходимость изменения объема и жесткости пневмогидравлического аккумулятора 14. Для этого перемещением рычага 22 от себя выдвигаем шайбу-разобщитель 21 на некоторую величину, тогда перепускной клапан 20 открывается и газ из полости пневмогидравлического аккумулятора 14 поступает в под поршневое пространство между поршнем 18 и шайбой-разобщителем 21. В результате этого перемещение поршня 18 замедляется и происходит плавное увеличение объема пневмогидравлического аккумулятора 14 без скачков. В том случае, если нагрузка на крюке продолжает увеличиваться, можно дополнительно произвести увеличение объема пневмогидравлического аккумулятора 14 выдвижением шайбы-разобщителя 21 в полости гидроцилиндра-регулятора 17. В процессе работы шайба-разобщитель блокируется фиксатором 23.

Накопленная энергия в пневмогидравлическом аккумуляторе в процессе трогания периодически возвращается на элементы трансмиссии. При этом происходит плавное перемещение транспортного средства в период трогания с места и разгона транспортного средства с нагрузкой на крюке, в зависимости от выполняемой работы степень жесткости упругого элемента регулируется.

Таким образом, в изобретении предлагается техническое решение по защите двигателя и трансмиссии транспортной машины от пиковых динамических нагрузок не только в начале разгона, но и в процессе установившегося движения путем подключения к газовому объему ПГА дополнительного газового объема, за счет перемещения в цилиндре поршня обеспечивается возможность бесступенчатого регулирования жесткости вала водила планетарной муфты сцепления.

Планетарная муфта сцепления с бесступенчатым регулированием жесткости упругого элемента, содержащая связанный с двигателем планетарный редуктор, пневмогидравлический аккумулятор, гидронасос, механически связанный с солнечной шестерней редуктора, и гидрораспределитель, отличающаяся тем, что она снабжена дополнительной цилиндрической пневмокамерой, трубопроводом соединенной с воздушной полостью пневмогидравлического аккумулятора, которая имеет разделительный поршень с уплотнительными кольцами и перепускными клапанами, каждый из которых выполнен в виде стального шарика, прижатого пружиной к седлу и обеспечивающего открытие клапана при давлении 0,15-0,2 МПа, при этом поршень имеет возможность свободного перемещения внутри камеры, а шайба-разобщитель устанавливает требуемое крайнее его положение для регулирования жесткости муфты благодаря наличию фиксатора.

Подбор чисел зубьев планетарных передач

Число зубьев колёс подбирают на первом этапе расчёта планетарной схемы по заранее установленному передаточному отношению. Особенность проектирования планетарного ряда заключается в соблюдении требований правильной сборки, соосности и соседства механизма:

  • зубья сателлитов должны совпадать с впадинами солнца и эпицикла;
  • планеты не должны задевать друг друга зубьями. На практике более 6 сателлитов не используют из-за трудностей равномерного распределения нагрузки;
  • оси водила, солнечного и коронного колёс должны совпадать.

Основное соотношение подбора зубьев передачи через передаточное число выглядит так:

i = 1+Zкорона/Zсолнце,

где i — передаточное число;

Читать

Типичные неполадки и ремонт АКПП f4a42

Zn — количество зубьев.

Условие соосности соблюдается при равных межосевых расстояниях солнечного колеса, короны и водила. Для простой планетарной зубчатой передачи проверяют межосевые расстояния между центральными колёсами и сателлитами. Равенство должно удовлетворять формуле:

Zкорона= Zсолнце+2×Zсателлит.

Чтобы между планетами оставался зазор, сумма радиусов соседних шестерней не должна превышать осевое расстояние между ними. Условие соседства с солнечным колесом проверяют по формуле:

sin (π/c)> (Zсателлит+2)/(Zсолнце+Zсателлит),

где с — количество сателлитов.

Планетные колёса размещаются равномерно, если соотношение зубьев короны и солнца к количеству сателлитов окажется целым:

Zсолнце/с = Z;

Zкорона/с = Z,

где Z — целое число.

Советы по подбору планетарного редуктора

Перед выбором планетарного редуктора проводят точный расчёт нагружения и режимов работы механизма. Определяют тип передачи, осевые нагрузки, температурный диапазон и типоразмеры редуктора. Для тяжёлой спецтехники, где нужен большой крутящий момент при малых скоростях, выбирают редуктор с высоким передаточным отношением.

Чтобы сбавить угловую скорость, не снижая крутящего момента, применяют привод с электродвигателем и редуктором. При выборе мотор редуктора учитывают:

  • эксплуатационную нагрузку;
  • момент вала на выходе;
  • частоту вращения входного и выходного валов;
  • мощность электродвигателя;
  • монтажное исполнение.

Область применения планетарных передач

Планетарная схема используется в:

  • редукторах;
  • автоматических и механических коробках передач;
  • в приводах летательных аппаратов;
  • дифференциалах машин, приборов;
  • ведущих мостах тяжёлой техники;
  • кинематических схемах металлорежущих станков.

Планетарную коробку передач применяют в агрегатах с переменным передаточным отношением, затормаживая водило. В гусеничной технике для сложения потоков мощности элементы в планетарном механизме не блокируют.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]