Система изменения степени сжатия ДВС: даже это стало возможным

Двигатель с переменной степенью сжатия. Суть изменения

В бензиновых двигателях значения степени сжатия в прямую связано с условиями детонации. Оно как правило возникает при нагрузках и зависит от качества бензина.

Двигатели с высоким КПД имеют высокие показатели степени сжатия, как следствие используют топливо с высокооктановым числом, менее подверженное к детонации при максимальных нагрузках.

Для поддержания мощностных характеристик двигателя в бездетонационном режиме логично снижать степень сжатия. Например, при резком разгоне или при движении на подъем, когда цилиндры максимально наполняются топливной смесью, выжимая из него все что он имеет.

Тут бы и немного снизить степень сжатия, чтобы избежать детонацию, не снижая его мощности, которая сильно повышает износ поршневой группы двигателя.

При средних нагрузках, высокий уровень степени сжатия не провоцирует детонацию, степень сжатия высокая, КПД тоже, его мощность остается максимальной, за счет этого естественно повышается его экономичность.

Казалось бы, эту задачу можно решить просто, вдувать топливную смесь под разным давлением в камеру сгорания, по мере надобности.

Но вот незадача, при повышении таким способом степени сжатия, увеличиваются нагрузки на детали двигателя. Решать такие проблемы надо будет увеличением соответствующих деталей, что соответственно скажется на общей массе двигателя. При этом снижается надежность двигателя и соответственно его ресурс.

При переходе на изменяющуюся степень сжатия, процесс наддува можно так организовать, что при снижении степени сжатия, он будет обеспечивать максимально-эффективное давление при любом режиме работы.

При этом нагрузки на детали поршневого отдела двигателя будут не значительно увеличены, что позволит безболезненно форсировать двигатель без значительного увеличения его веса.

Понимая это, изобретатели и призадумались. И выдали. На чертеже ниже представлена самый распространенный вариант изменения степени сжатия.


На средних нагрузках, по средством эксцентрика 3, доп.шатун 4 принимает крайнее правое положение и поднимает диапазон хода поршня 2 в самое верхнее положение. СЖ в таком положении максимальная.

На высоких нагрузках, эксцентрик 3 смещает доп.шатун 4 влево, что смещает шатун 1 с поршнем 2 вниз. При этом зазор над поршнем 2 увеличивается, уменьшая степень сжатия.

Переменная степень сжатия двигателя: как это работает

Прежде всего, доступная возможность изменять степень сжатия позволяет в значительной мере увеличить производительность турбомоторов с одновременным уменьшением расхода топлива. В двух словах, в зависимости от режима работы и нагрузок на ДВС топливный заряд сжимается и сгорает в самых оптимальных условиях.

Когда нагрузки на силовой агрегат минимальны, в цилиндры подается экономичная «бедная» смесь (много воздуха и мало топлива). Для такой смеси хорошо подходит высокая степень сжатия. Если же нагрузки на мотор растут (подается «богатая» смесь, в которой больше бензина), тогда закономерно возрастает риск возникновения детонации. Соответственно, чтобы этого не произошло, степень сжатия динамично уменьшается.

В двигателях, где степень сжатия постоянна, своеобразной защитой от детонации является изменение УОЗ (угол опережения зажигания). Данный угол сдвигается «назад». Естественно, такой сдвиг угла приводит к тому, что хотя детонации нет, но при этом теряется и мощность. Что касается мотора с изменяемой степенью сжатия, сдвигать УОЗ нет необходимости, то есть не происходит мощностных потерь.

Что касается самой реализации схемы, фактически задача сводится к тому, что происходит физическое уменьшение рабочего объема двигателя, однако сохраняются все характеристики (мощность, момент и т.д.)

Сразу отметим, над таким решением трудились разные компании. В результате появились разные способы управления степенью сжатия, например, изменяемый объем камеры сгорания, шатуны с возможностью подъема поршней и т.д.

  • Одной из самых ранних разработок стало внедрение дополнительного поршня в камеру сгорания. Указанный поршень имел возможность перемещаться, одновременно изменяя объем. Минусом всей конструкции стала необходимость устанавливать дополнительные детали в . Также сразу проявились изменения формы камеры сгорания, горючее сгорало неравномерно и неполноценно.

По указанным причинам данный проект так и не был завершен. Такая же участь постигла и разработку, которая имела поршни с возможностью изменения их высоты. Указанные поршни разрезного типа оказались тяжелыми, еще добавились трудности касательно реализации управления высотой подъема крышки поршня и т.д.

  • Дальнейшие разработки уже не затрагивали поршни и камеру сгорания, максимум внимания был уделен вопросу подъема коленчатого вала. Другими словами, стояла задача реализовать управление высотой подъема коленвала.

Схема устройства такова, что опорные шейки вала расположены в специальных муфтах эксцентрикового типа. Указанные муфты приводятся в движение посредством шестерен, которые связаны с электрическим двигателем.

Проворот эксцентриков позволяет поднять или опустить коленчатый вал, что и приводит к изменению высоты подъема поршней по отношению к ГБЦ. В результате объем камеры сгорания увеличивается или уменьшается, одновременно меняется и степень сжатия.

Отметим, что было построено несколько прототипов на базе 1.8-литрового турбированного агрегата от Volkswagen, степень сжатия менялась от 8 до 16. Двигатель долго испытывали, но серийным агрегат так и не стал.

  • Еще одной попыткой найти решение стал двигатель, в котором степень сжатия менялась посредством подъема всего блока цилиндров. Разработка принадлежит бренду Saab, а сам агрегат чуть даже не попал в серию. Двигатель известен как SVC, объем 1.6 литра, агрегат с 5 цилиндрами, оснащен турбонаддувом.

Мощность составила около 220 л. с., крутящий момент чуть более 300 Нм. Примечательно то, что расход горючего в режиме средних нагрузок снизился почти на треть. Что касается самого топлива, появилась возможность заливать как АИ-76, так и 98-й.

Инженеры Saab разделили блок цилиндров, выделив две условные части. В верхней находились головки и гильзы цилиндров, тогда как в нижней части коленчатый вал. Своеобразным соединением этих частей блока с одной стороны был подвижный шарнир, а с другой особый механизм, оснащенный электроприводом.

Так была реализована возможность немного поднять верхнюю часть под определенным углом. Такой угол подъема составил всего несколько градусов, при этом степень сжатия менялась от 8 до 14. При этом герметизировать «стык» должен был кожух из резины.

На практике сами детали для подъема верхней части блока, а также и сам защитный кожух оказались весьма слабыми элементами. Возможно, именно это помешало мотору попасть в серию и проект дальше закрыли.

  • Очередную разработку далее предложили инженеры из Франции. Турбомотор с рабочим объемом 1.5 литра получил возможность менять степень сжатия от 7 до 18 и выдавал мощность около 225 л.с. Моментная характеристика зафиксирована на отметке 420 Нм.

Конструктивно агрегат сложный, с разделенным шатуном. В той области, где шатун крепится к коленвалу, деталь оснастили особым зубчатым коромыслом. В месте соединения шатуна с поршнем также была внедрена планка-рейка зубчатого типа.

С другой стороной к коромыслу была прикреплена рейка поршня, который реализовывал управление. Система приводилась от системы смазки, рабочая жидкость проходила через сложную систему каналов, клапанов, а также имелся дополнительный электропривод.

Рекомендуем также прочитать статью о том, как форсировать двигатель. Из этой статьи вы узнаете о существующих доступных способах форсирования двигателя внутреннего сгорания для получения большей мощности, лучшего отклика на педаль газа, увеличения крутящего момента и т.д.

В двух словах, перемещение управляющего поршня оказывало воздействие на коромысло. В результате менялась и высота подъема основного поршня в цилиндре. Отметим, что двигатель также не стал серийным, а проект был заморожен.

  • Следующей попыткой создать двигатель с изменяемой степенью сжатия стало решение инженеров Infiniti, а именно двигатель VCT (от англ. Variable Compression Turbocharged). В этом моторе стало возможным менять степень сжатия от 8 до 14. Особенностью конструкции является уникальный траверсный механизм.

В основе лежит соединение шатуна с нижней шейкой, которое является подвижным. Также использована система рычагов, которые приводятся в действие от электродвигателя.

Управляет процессом контроллер, посылая сигналы на электродвигатель. Электромотор после получения команды от блока управления смещает тягу, а система рычагов реализует смену положения, что и позволяет менять высоту подъема поршня.

В результате агрегат Infiniti VCT с рабочим объемом 2.0 литра с мощностью около 265 л.с. позволил экономить почти 30% горючего сравнительно с аналогичными ДВС, которые при этом имеют постоянную степень сжатия.

Если производителю удастся эффективно решить имеющиеся на данный момент проблемы (сложность конструкции, повышенные вибрации, надежность, высокая конечная стоимость производства агрегата и т.д.), тогда оптимистичные заявления представителей компании вполне могут воплотиться в реальность, а сам двигатель имеет все шансы стать серийным уже в 2018-2019 году.

Система от SAAB

Первыми воплотили мечту в жизнь инженеры фирмы SAAB и в 2000 году на выставке в Женеве выставили на всеобщее обозрение экспериментальный двигатель с системой Variable Compression.

Этот уникальный двигатель имел мощность в 225 л.с., при объеме 1,6 л., а расход топлива был в вдвое меньшим аналогичного объема. Но самое фантастичное, он мог работать и на бензине, и на спирте, и даже на дизельном топливе.

Изменение рабочего объема двигателя осуществлялось бесшагово. Степень сжатия изменялась при наклоне моноблока (совмещенная головка блока с блоком цилиндров) относительно блока-картера. Отклонение моноблока вверх приводило к уменьшению степени сжатия, отклонение вниз — к увеличению.

Смещение по вертикальной оси на 4 градуса, что позволило иметь сжатия от 8:1 до 14:1. Управление изменением степени сжатия, в зависимости от нагрузки, осуществлялось специальной электронной системой управления по средством гидропривода. При максимальной нагрузке СЖ 8:1, при минимальной 14:1.

Так же в нем применялся механический наддув воздуха, он подключался только при наименьших значениях степени сжатия.

Но не смотря на такие удивительные результаты, двигатель не пошел в серию, и работы по доводке на сегодняшний день свернуты по неизвестной нам причине.

Двигатели с изменяемой степенью сжатия VCR (Variable compresion ratio)

Рассмотрим конструктивные схемы двигателей VCR, а также проанализируем их преимущества и недостатки.

1. Двигатели VCR, в которых происходит изменение степени сжатия за счет движения головки блока с цилиндром

На рис. 1 представлен двигатель с боковым шарниром. В таком типе двигателя головка блока вместе с цилиндром движется вверх-вниз относительно шарнира. При этом есть возможность управлять степенью сжатия и четко ее фиксировать, соответственно режиму работы двигателя. В зависимости от степени сжатия, поршень изменяет свою кинематику, что не всегда благоприятно сказывается на мощностных характеристиках двигателя. По утерям на трение, силу инерции и балансировку такой двигатель будет идентичным обычному двигателю. Но по надежности и жесткости конструкции, он имеет значительные недостатки. Такие двигатели проблематично устанавливать на любые транспортные средства из-за изменения габаритов двигателя в процессе его работы.

На рис. 2 показано изменение степени сжатия в зависимости от положения головки блока. На первом рисунке -низкая степень сжатия, на втором — высокая степень сжатия.

На рис. 3 показан двигатель SAAB с изменяемой степенью сжатия. В верхней части рисунка показан угол наклона головки блока, при изменении которого меняется степень сжатия.

Есть более совершенные двигатели такого типа (рис. 4). Шарнир устанавливается не со стороны блока цилиндров, а в верхней части головки. В таком случае все преимущества и недостатки этого двигателя остаются без изменений, кроме кинематики поршня, так как цилиндр с головкой блока осуществляет только вертикальные движения. В таких типах двигателей головка блока цилиндра изготавливается как одно целое с гильзой цилиндра.

2.Двигатели с гидравлическим поршнем

На рис. 5 показана кинематическая схема двигателя с гидравлическим поршнем.

В этих двигателях не изменяется кинематика поршня, а также они имеют небольшую шумность. Но у них тяжело контролировать степень сжатия, поскольку изменяется высота поршня, а поршень осуществляет возвратнопоступательные движения. Потери на трение в таких двигателях несколько выше, чем в обычных. А также надежность и жесткость двигателя ниже. Сила инерции и балансировка двигателя также не удовлетворительны. Но такие двигатели без особых проблем можно устанавливать на любые автомобили.

На рис. 6 представлен двигатель с гидравлическим поршнем, а также изменение высоты поршня в зависимости от степени сжатия.

3.Двигатели с эксцентриками на подшипниках

Таких схем бывает три типа. В схеме первого типа эксцентрик устанавливается на поршневом пальце, второго — эксцентрик устанавливается на шатунных шейках, и третьего — эксцентрик устанавливается на коренных шейках. В таких двигателях потери на трения не велики, но их надежность и жесткость недостаточны. В этих двигателях большая сила инерции, плохая сбалансированность двигателя и повышенная его шумность. Но есть возможность устанавливать такие двигатели на любые транспортные средства, так как их габариты в процессе работы не изменяются. Что касается контроля степени сжатия, то на первых двух типах двигателей осуществлять его сложно, на двигателе третьего типа достаточно просто.

На рис. 7 представлена кинематическая схема двигателя с эксцентриками на подшипниках.

На рис. 8 показано, как изменяется степень сжатия в зависимости от перемещения механизма изменения эксцентрика.

На рис. 9 более наглядно показано изменение положения верхней мертвой точки поршня и, соответственно, степени сжатия.

4.Двигатели с многозвенным кривошипом В этих двигателях очень сложная кинематика поршня, достаточно большие силы инерции, а также плохая сбалансированность двигателя. В таких типах двигателей высокая жесткость и надежность. Кинематическая схема представлена на рис. 10.

5. Двигатели с добавочным поршнем в головке блока

На рис. 11 показана кинематическая схема двигателя с добавочным поршнем головки блока. По ней можно легко разобраться, как изменяется степень сжатия в зависимости от изменения положения добавочного поршня.

Такие двигатели наиболеепохожи на обычный двигатель. Кинематика поршня остается неизменной. Потери на трение несколько выше, чем в обычных двигателях. По шумности они ни чем не отличаются от обычных. А также силы инерции и балансировкам двигателя идентичны обычному двигателю. Но в таких двигателях контроль степени сжатия можно легко осуществлять по отдельности в каждом цилиндре. При такой схеме наиболее просто переделать стандартный двигатель в двигатель VCR.

Рис. 12. Механизм привода добавочного поршня

Рис. 13. Показано два положения добавочного поршня при разной степени сжатия

6.Двигатели с шестеренчатым механизмом На рис. 14 показана кинематическая схема двигателя VCR с шестеренчатым механизмом.

На рис. 15 показаны положения поршня при разных степенях сжатия. Эта схема, хоть и сложна, но дает возможность легко и четко регулировать степень сжатия в каждом цилиндре по отдельности.

Рис. 16. Схема механизма изменения степени сжатия и два значения степени сжатия в зависимости от положения верхней мертвой точки поршня.

Двигатели, показанные на рис. 14, 15, 16, выигрывают тем, что они не изменяют своих внешних габаритов. Все изменения, касающиеся степени сжатия, происходят внутри двигателя.

Существует много конструкционных схем этих двигателей, которые имеют достаточно большое количество промежуточных звеньев, что неблагоприятно влияет на работу двигателя, а также повышают потери на трение. Но при таких схемах конструкции двигателя можно легко осуществлять изменение степени сжатия в каждом цилиндре по отдельности. Наиболее перспективный двигатель, который обладает множеством преимуществ по сравнению с обычным, — это двигатель французской фирмы МЕЕС-5 VCR (рис. 17).

Такой двигатель построен по кинематической схеме (рис. 14). Он имеет большие преимущества перед выше изложенными двигателями. В двигателе с шестеренчатым механизмом поршень при прохождении верхней и нижней мертвых точек движется без перекладки. Это снимает с цилиндропоршневой группы лишние нагрузки. При такой работе двигатель меньше изнашивается.

Конструкция, работа и технология изготовления такого двигателя будут описана в следующей статье.

Остап Коляса

VCR (Variable Compression Ratio)

Французы фирмы MCE-5 Development, для автоконцерна Пежо разработали принципиально новый двигатель VCR, с совершенно оригинальной кинематической схемой кривошипно-шатунного механизма.

МСЕ-5 Development, сделала для концерна «Пежо», тоже двигатель с переменной степенью сжатия VCR. Но в этом решении они применили оригинальную кинематику кривошипно-шатунного механизма.

В нем передача движения от шатуна на поршень идет через зуб.сектор 5. Справа опорная зуб.рейка 7, на неё опирается сектор 5, так происходит возвратно-поступательное движение поршня, он соединен с рейкой 4. Рейка 7 соеденина с поршнем 6.

Сигнал поступает с блока управления, и в зависимости от режима работы двигателя, изменяется положение поршня 6, связанного с рейкой 7. Смещается рейка управления 7 вверх или вниз. Она изменяет положение НМТ и ВМТ поршня двигателя, и соответственно СЖ от 7:1 до 20:1. Если нужно, можно изменять положение каждого цилиндра отдельно.

Зубчатая рейка жестко скреплена с управляющим поршнем. В пространство над поршнем подается масло. Давлением масла и регулируется степень сжатия в основном рабочем цилиндре.

Соединительный рычаг 1, шестерня синхронизации 2, стойка поршня 3, рабочий поршень 4, выпускной клапан 5, головка блока цилиндров 6, впускной клапан 7, поршень управления 8, блок цилиндров 9, стойка поршня управления 10, зубчатый сектор 11. В данное время двигатель дорабатывается и вполне возможно появится в серии.

Изменение степени сжатия: зачем это нужно

Многие опытные водители знакомы с такими понятиями, как степень сжатия двигателя и октановое число для бензиновых моторов, а также цетановое число для дизельных. Для менее осведомленных читателей напомним, что степень сжатия представляет собой отношение объема над поршнем, который опущен в НМТ (нижняя мертвая точка) к тому объему, когда поршень поднялся в ВМТ (верхняя мертвая точка).

Бензиновые агрегаты имеют, в среднем, показатель 8-14, дизели 18 -23. Степень сжатия является фиксированной величиной и конструктивно закладывается во время разработки того или иного двигателя. Также от степени сжатия будут зависеть и требования к использованию октанового числа бензина в том или ином моторе. Параллельно учитывается и то, атмосферный двигатель или с наддувом.

Если говорить о самой степени сжатия, фактически это показатель, который определяет, насколько сильно будет сжиматься топливно-воздушная смесь в цилиндрах двигателя. Если просто, хорошо сжатая смесь лучше воспламеняется и полноценнее сгорает. Получается, увеличение степени сжатия позволяет добиться роста КПД двигателя, получить улучшенную отдачу от мотора, снизить расход топлива и т.д.

Однако есть и нюансы. Прежде всего, это детонация двигателя. Опять же, если не вдаваться в подробности, в норме заряд топлива и воздуха в цилиндрах должен именно гореть, а не взрываться. Более того, воспламенение смеси должно начинаться и оканчиваться в строго заданные моменты.

При этом топливо имеет так называемую «детонационную стойкость», то есть способность противостоять детонации. Если же сильно увеличить степень сжатия, тогда горючее может начать детонировать в двигателе при определенных режимах работы ДВС.

Результат — неконтролируемый взрывной процесс сгорания в цилиндрах, быстрое разрушение деталей мотора ударной волной, значительный рост температуры в камере сгорания и т.д. Как видно, сделать постоянной высокую степень сжатия нельзя именно по этим причинам. При этом единственным выходом в данной ситуации является возможность гибко изменять данный показатель применительно к разным режимам работы двигателя.

Такой «рабочий» мотор недавно предложили инженеры премиального бренда Infiniti (элитное подразделение Nissan). Также в аналогичные разработки были и остаются вовлечены другие автопроизводители (SAAB, Peugeot ,Volkswagen и т.д). Итак, давайте рассмотрим двигатель с изменяемой степенью сжатия.

Статья в тему: Плюсы и минусы дизельного двигателя – простыми словами о самом важном

Рейтинг
( 2 оценки, среднее 4.5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]