Что такое ТНВД и его роль в работе двигателя

В предыдущем цикле статей об устройстве топливной системы бензинового двигателя не один раз затрагивалась тема топливного насоса высокого давления для дизельного мотора и бензиновых двигателей с прямым (непосредственным) впрыском топлива.

Данная статья представляет собой отдельный материал, который описывает конструкцию дизельного топливного насоса высокого давления, его назначение, потенциальные неисправности, схему и принципы работы на примере устройства такой системы топливоподачи для данного типа ДВС. Итак, давайте перейдем сразу к делу.

Что такое ТНВД?

Топливный насос высокого давления сокращенно называют ТНВД. Данное устройство является одним из наиболее сложных в конструкции дизельного двигателя. Основной задачей такого насоса становится подача дизельного топлива под высоким давлением.

Насосы обеспечивают подачу топлива в цилиндры дизельного мотора под определенным давлением, а также строго в определенный момент. Порции подаваемого топлива отмерены очень точно и соответствуют степени нагрузки на двигатель. Насосы ТНВД различают по способу впрыска. Бывают насосы непосредственного действия , а также насосы с аккумуляторным впрыском.

Топливные насосы непосредственного действия имеют механический привод плунжера. Процессы нагнетания и впрыска топлива протекают в одно время. В каждый отдельный цилиндр дизельного ДВС определенная секция ТНВД подает нужную дозу горючего. Давление, которое необходимо для эффективного распыления, создается движением плунжера топливного насоса.

ТНВД с аккумуляторным впрыском отличается тем, что на привод рабочего плунжера воздействуют силы давления сжатых газов в цилиндре самого ДВС или воздейсвие оказывается при помощи пружин. Встречаются топливные насосы с гидравлическим аккумулятором, которые нашли применение в мощных малооборотистых дизельных ДВС.

Стоит отметить, что системы с гидроаккумулятором характеризуются раздельными процессами нагнетания и впрыска. Горючее под высоким давлением нагнетается топливным насосом в аккумулятор, а уже затем поступает к топливным форсункам. Такой подход обеспечивает эффективное распыливание и оптимальное смесеобразование, которое подходит для всего диапазона нагрузок на дизельный агрегат. К минусам этой системы можно отнести сложность конструкции, что и стало причиной непопулярности такого насоса.

Современные дизельные установки используют технологию, которая основана на управлении электромагнитными клапанами форсунок от электронного блока управления с микропроцессором. Указанная технология получила название «Сommon Rail».

Основные неисправности, их причины, ремонт ТНВД

Топливный насос — сложный узел, который в процессе эксплуатации может выходить из строя. Как уже отмечалось, причиной проблем может быть плохое топливо, а первыми под «удар» попадают плунжеры. При этом симптомы поломки очень похожи на признаки, характерные для двигателя. Неисправность ТНВД проявляет себя следующими признаками:

  • увеличение расхода;
  • течь горючего;
  • перегрев двигателя;
  • нестабильность работы ДВС на небольших оборотах;
  • падение мощности;
  • появление дыма в выхлопной системе;
  • подозрительные шумы и т. д.

К основным причинам неисправности стоит отнести:

  • Небольшой зазор в плунжерных парах.
  • Плохая солярка.
  • Попадание воды в дизельное топливо, что приводит к снижению ресурса узла и необходимости замены ТНВД.
  • Загрязнение топливного фильтра и, соответственно, попадание грязи в топливный насос.
  • Износ подшипников из-за дефекта или естественного старения.
  • Брак устройства: трещины, нарушение целостности подшипников, заедание втулки плунжера.
  • Проблемы с герметичностью и уплотнением ТНВД.
  • Коррозия плунжеров из-за высокого содержания воды в топливе.
  • Ошибки в работе клапана ТНВД.
  • Повреждение пружины, обеспечивающей возврат плунжера.

При появлении подозрений на неисправность необходимо проверить наличие влаги в плунжерных парах, измерить в них давление и проверить датчики, подающие команды к ЭБУ. Кроме того, важно осмотреть систему на факт утечек горючего и замерзание насоса. Наиболее эффективной является проверка в условиях СТО, где для выполнения работы применяется специальный стенд.

В случае замены нужно купить ТНВД и следовать инструкции производителя. Для продления срока службы механизма рекомендуется:

  • ежегодная промывка топливной системы;
  • своевременная замена фильтра, очищающего горючее;
  • применение зимнего дизеля в холодное время года;
  • покупка качественной солярки;
  • поддержание высокого уровня топлива в баке;
  • прогрев двигателя зимой перед поездкой;
  • использование специальных присадок при низком качестве дизельного горючего.

Указанные выше меры позволяют продлить срок службы ТНВД и обеспечить его нормальную работу.

Главные причины неисправностей

ТНВД является дорогостоящим устройством, которое очень требовательно к качеству топлива и смазочных материалов. Если автомобиль эксплуатируется на горючем низкого качества, такое топливо обязательно содержит твердые частицы, пыль, молекулы воды и т.д. Все это ведет к выходу из строя плунжерных пар, которые установлены в насосе с минимальным допуском, измеряющимся в микронах.

Низкокачественное топливо с легкостью выводит из строя форсунки, которые отвечают за процесс распыления и впрыска топлива.

Распространенные признаки неисправностей в работе ТНВД и форсунок представляют собой следующие отклонения от нормы:

  • расход топлива заметно увеличен;
  • отмечается повышенная дымность выхлопа;
  • в процессе работы присутствуют посторонние звуки и шум;
  • мощность и отдача от ДВС заметно падают;
  • наблюдается затрудненный пуск;

Современные моторы с ТНВД оснащены электронной системой топливного впрыска. ЭБУ дозирует подачу топлива в цилиндры, распределяет этот процесс по времени, определяет нужное количество дизтоплива. Если владелец замечает малейшие перебои в работе двигателя, то это является безотлагательным поводом для немедленного обращения в сервис. Силовую установку и топливную систему тщательно исследуют при помощи профессионального диагностического оборудования. Во время диагностики специалисты определяют многочисленные показатели, среди которых первостепенными являются:

  • степень равномерности подачи топлива;
  • давление и его стабильность;
  • частота вращения вала;

Использование насосов высокого давления в бензиновых двигателях

Важно

У многих автовладельцев сложился стереотип, что ТНВД используется только на дизельных моторах. Это не так, ведь высокое давление может потребоваться и на бензиновых ДВС с прямым впрыском.

К примеру, топливный насос ставится на двигателях с GDI-системами, когда горючее подается непосредственно в цилиндры. Такие моторы требуют заправки качественным бензином с высоким октановым числом.

Применение горючего с присадками не рекомендуется, ведь это может привести к ошибкам в работе ТНВД и снижению его эффективности. Конструктивно механизм на GDI-двигателях состоит из следующих элементов:

  • клапан, регулирующий низкое давление;
  • устройство-регулятор вращения;
  • штуцер и дроссель для вывода горючего;
  • распредголовка;
  • насос низкого давления;
  • внутренняя полость;
  • ЭМ-клапан остановки горючего;
  • автомат опережения впрыска бензина.

Ошибка многих владельцев бензиновых авто с ТНВД — экономия на топливе, из-за чего дорогостоящий механизм быстро выходит из строя.

На первом этапе формируются потертости плунжеров, а внутри можно заметить красноватый оттенок, имеющий схожесть с коррозией. Первыми признаками сбоев в работе может стать снижение мощности и трудности с пуском. В таких случаях необходимо ехать на СТО для ремонта. Подробнее на этих вопросах остановимся ниже.

Эволюция устройства

Ужесточение экологических норм и требований касательно выбросов вредных веществ в атмосферу привело к тому, что механические топливные насосы высокого давления для дизельных автомобилей стали вытесняться системами с электронной регулировкой. Механический насос попросту не смог обеспечить дозирование топлива с необходимой высокой точностью, а также не был в состоянии максимально быстро реагировать на динамично меняющиеся режимы работы двигателя.

Всемирно известные производители Bosch, Nippon Denso и другие предложили системы электронного управления подачей топлива. Указанные разработки основывались на топливном насосе VЕ. Такие системы позволяли добиться повышения точности дозирования топлива в каждый цилиндр по отдельности.

Внедрение электронных систем обеспечивало уменьшение между циклами нестабильности процесса сгорания топливно-воздушной смеси, а также снижение неравномерностей в процессе работы дизельного двигателя на холостом ходу.

Некоторые системы имели в своей конструкции клапан быстрого действия, что позволило разделить процесс впрыска топлива на две фазы. Двухфазный впрыск привел к конечному уменьшению жесткости самого процесса сгорания смеси.

Полученная точность в процессе управления системой впрыска обеспечила снижение выбросов токсичных веществ благодаря более полному сгоранию топливно-воздушной смеси, а возросшая эффективность такого сгорания повысила КПД двигателя и увеличила итоговую мощность силовой установки.

Электронные системы получили топливные насосы распределительного типа. Такие насосы оборудованы управляемыми устройствами, которые осуществляют регулировку положения дозатора. Дополнительно имеется клапан для опережения впрыска горючего.

Классификация и устройство ТНВД

Конструктивно топливный насос высокого давления бывает нескольких видов, имеющих схожий принцип действия и разную конструкцию. Рассмотрим каждый из видов подробнее.

Многоплунжерные

Особенность — наличие индивидуальных плунжеров для каждого цилиндра. Такие виды насосов бывают двух видов:

  1. V-типа — установлены под 75-120-градусным углом в 2-рядном исполнении;
  2. Рядные — смонтированы в однорядном исполнении и находятся друг возле друга.

В рядных насосах горючее подается к форсункам двигателя по определенному алгоритму с помощью механического привода и кулачков. Последние управляют плунжерной парой и обеспечивает ее перемещение.

При движении поршня вниз топливо втягивается, а вверх — формируется давление, и после подается горючее. Время открытия рассчитывается с помощью ЭБУ, получающего команды от нескольких датчиков, контролирующих позицию педали акселератора и частоту работы коленвала.

В V-образных ТНВД узел перемещения плунжеров объединен с рейками, которые действуют на втулочный элемент. Благодаря этому, устройство занимает меньше места, имеет большую жесткость, укороченный вал кулачков и повышенное давление подачи топлива.

Распределительные

В таких ТНВД предусмотрен один-два плунжера, обеспечивающие подачу горючего прямо в камеру сгорания. Число цилиндров — 4-12. Распределительный тип насосов высокого давления популярен в легковых машинах, ведь на грузовых автомобилях они подлежат более быстрому износу. Такой вид насосов чаще всего встречается на бензиновых моторах.

Плунжерный привод имеет вид кулачкового механизма роторного, внешне приводного и торцевого типа. Последний вариант наиболее популярный, ведь требует наличия только одной плунжерной пары. Внешне приводные системы почти не используются из-за низкой надежности.

В роторных приводах предусмотрена лишь одна секция подачи топлива и две-четыре плунжерные пары. Здесь нет самостоятельных втулок, ведь они имеют вид отверстий в распределительном вале ТНВД. Что касается особенностей работы, они очень похожи на торцевой вариант.

Магистральные ТНВД системы Common Rail

По названию понятно, что такой вид насосов используется в системе CommonRail, подразумевающей сбор горючего в топливной рампе до отправки к форсункам. В системе предусмотрено до трех плунжерных элементов, обеспечивающих высокое давление. Плунжерный механизм перемещается с помощью вращающегося вала и пружины. В определенный момент кулачок воздействует на пружинку, а так на поршень, что приводит к увеличению объем над плунжером.

Указанные выше действия приводят к разрежению камеры, открытию клапана и подаче горючего.

С ростом давления происходит закрытие клапана и перемещение клапана в обратном направлении с параллельным сжатием горючего. Как только достигается нужный уровень, происходит открытие специального клапана и подача горючего.

Принцип работы системы

ЭБУ получает соответствующие сигналы от различных датчиков. Учитывается положение педали газа, частота вращения вала двигателя, температура охлаждающей жидкости и температура самого топлива. Электронный блок управления получает данные о подъеме иглы форсунок, скорости движения транспортного средства, давлении наддува воздуха и его температуре на впуске.

ЭБУ обрабатывает полученную от датчиков информацию, а затем посылает сигнал на ТНВД. Это обеспечивает подачу необходимого и оптимального количества топлива к форсункам. Дополнительно обеспечивается наилучший угол опережения впрыска с учетом конкретных условий работы двигателя. Любая дополнительная нагрузка сразу отмечается ЭБУ, на ТНВД приходит сигнал и происходит увеличение топливоподачи для компенсации возросших нагрузок.

Электронный блок управления осуществляет контроль за работой свечей накаливания. ЭБУ следит за периодом накаливания, режимом работы свечей накаливания и периодом после накаливания. Все это происходит с учетом зависимости от температуры.

Ниже приведена схема электронного регулирования одноплунжерного насоса VE от Bosch для дизельного мотора:

  1. датчик начала впрыска;
  2. датчик частоты вращения коленвала и ВМТ;
  3. воздухорасходомер;
  4. датчик температуры ОЖ;
  5. датчик положения педали газа;
  6. блок управления;
  7. устройство ускорителя пуска и прогрева ДВС;
  8. устройство для управления клапаном рециркуляции отработанных газов;
  9. устройство для управления углом опережения топливного впрыска;
  10. устройство для управления приводом дозирующей муфты;
  11. датчик хода дозатора;
  12. датчик температуры топлива;
  13. топливный насос высокого давления;

Ключевым элементом в данной системе выступает устройство для перемещения дозирующей муфты ТНВД (10). Управляет процессами подачи топлива блок управления (6). Информация поступает в блок от датчиков:

  • датчик начала впрыска , который установлен в одной из форсунок (1);
  • датчик ВМТ и частоты вращения коленвала (2);
  • воздухорасходомер (3);
  • датчик температуры охлаждающей жидкости (4);
  • датчик положения педали акселератора (5);

В памяти блока управления хранятся заданные оптимальные характеристики. Основываясь на информации от датчиков, ЭБУ посылает сигналы на механизмы управления цикловой подачей и углом опережения впрыска. Так происходит регулировка величины цикловой подачи топлива в различных режимах работы силового агрегата, а также в момент холодного запуска двигателя.

Исполнительные устройства имеют потенциометр, который посылает обратный сигнал в ЭБУ, благодаря чему определяется точное положение дозирующей муфты. Регулировка угла опережения впрыскивания топлива происходит по аналогичному принципу.

ЭБУ отвечает за создание сигналов, которые обеспечивают регулировку многочисленных процессов. Блок управления стабилизирует частоту вращения в режиме холостого хода, регулирует рециркуляцию отработанных газов с определением показателей по сигналам датчика массового расхода воздуха. Блок сопоставляет сигналы в реальном времени от датчиков с теми значениями, которые в нем запрограммированы в виде оптимальных. Далее происходит передача выходного сигнала от ЭБУ на сервомеханизм, который обеспечивает необходимое положение дозирующей муфты. При этом достигается высокая точность регулирования.

Данная система имеет программу самодиагностики. Это позволяет осуществлять отработку аварийных режимов для обеспечения движения транспортного средства даже при наличии ряда определенных неисправностей. Полный отказ происходит только при поломке микропроцессора ЭБУ.

Наиболее распространенным решением регулировки цикловой подачи для одноплунжерного насоса высокого давления распределительного типа является использование электромагнита (6). Такой магнит имеет поворотный сердечник, конец которого соединяется посредством эксцентрика с дозирующей муфтой (5). Электрический ток проходит в обмотке электромагнита, при этом угол поворота сердечника может быть от 0 до 60°. Так происходит перемещение дозирующей муфты (5). Данная муфта в итоге регулирует цикловую подачу ТНВД.

Одноплунжерный насос с электронным управлением

  1. ТНВД;
  2. электромагнитный клапан для управления автоматом опережения впрыска топлива;
  3. жиклер;
  4. цилиндр автомата опережения впрыска;
  5. дозатор;
  6. электромагнитное устройство изменения топливоподачи;
  7. ЭБУ;
  8. датчик температуры, давления наддува, положения регулятора топливоподачи;
  9. рычаг управления;
  10. возврат топлива;
  11. топливоподача к форсунке;

Автомат опережения впрыска управляется электромагнитным клапаном (2). Данный клапан обеспечивает регулировку давления топлива, которое действует на поршень автомата. Для клапана характерна работа в импульсном режиме по принципу «открытие — закрытие». Это позволяет модулировать давление, что зависит от частоты вращения вала ДВС. В момент открытия клапана давление падает, а это влечет за собой уменьшение угла опережения впрыска. Закрытый клапан обеспечивает увеличение давления, которое перемещает поршень автомата в сторону, когда угол опережения впрыска будет увеличен.

Данные импульсы ЭМК определяются ЭБУ и зависят от режима работы и температурных показателей двигателя. Момент начала впрыска определяется при помощи того, что одна из форсунок оборудована индукционным датчиком подъема иглы.

Исполнительные механизмы, которые оказывают воздействие на элементы управления топливоподачей в ТНВД распределительного типа, являются пропорциональными электромагнитными, линейными, моментными или шаговыми электродвигателями, которые выступают в роли привода для дозатора топлива в указанных насосах.

Форсунка с датчиком подъема иглы

Электромагнитный исполнительный механизм распределительного типа состоит из датчика хода дозатора, самого исполняющего устройства, дозатора, клапана изменения угла начала впрыска, который оборудован электромагнитным приводом. Форсунка имеет в своем корпусе встроенную катушку возбуждения (2). ЭБУ подает туда определенное опорное напряжение. Это сделано для поддержания тока в электроцепи постоянным и независимо от температурных колебаний.

Форсунка, оборудованная датчиком подъема иглы, состоит из:

  • регулировочного винта (1);
  • катушки возбуждения (2);
  • штока (3);
  • проводки (4);
  • электроразъема (4);

Указанный ток в результате обеспечивает создание вокруг катушки магнитного поля. В момент поднятия иглы форсунки сердечник (3) осуществляет изменение магнитного поля. Это вызывает изменение напряжения и сигнала. Когда игла находится в процессе подъема, тогда импульс достигает своего пика и определяется ЭБУ, который управляет углом опережения впрыска.

Полученный импульс электронный блок управления сравнивает с данными в своей памяти, которые соответствуют различным режимам и условиям работы дизельного агрегата. Затем ЭБУ осуществляет посылку возвратного сигнала на электромагнитный клапан. Указанный клапан соединен с рабочей камерой автомата опережения впрыскивания. Давление, воздействующее на поршень автомата, начинает изменяться. Результатом становится перемещение поршня под действием пружины. Так изменяется угол опережения впрыска.

Максимальным показателем давления, которое достигается при помощи электронного управления подачей топлива на основе топливного насоса VЕ, является показатель в 150 кгс/см2. Стоит отметить, что данная схема является сложной и устаревшей, напряжения в кулачковом приводе не имеют дальнейшей перспективы развития. Следующим этапом развития ТНВД являются схемы нового поколения.

Как происходит дозирование топлива. Электромагнитный клапан высокого давления

Электромагнитный клапан (клапан установки момента начала впрыска) состоит из таких элементов:

  1. седло клапана;
  2. направление закрытия клапана;
  3. игла клапана;
  4. якорь электромагнита;
  5. катушка;
  6. электромагнит;

За цикловую подачу и дозирование топлива отвечает указанный электромагнитный клапан. Указанный клапан высокого давления встроен в контур высокого давления ТНВД. В самом начале впрыска на катушку электромагнита (5) подается напряжение по сигналу блока управления. Якорь (4) осуществляет перемещение иглы (3) путем прижима последней к седлу (1).

Когда игла плотно прижата к седлу, тогда топливо не поступает. Давление топлива в контуре по этой причине быстро растет. Это позволяет открыть соответствующую форсунку. Когда нужное количество топлива оказалось в камере сгорания двигателя, тогда напряжение на катушке электромагнита (5) пропадает. Происходит открытие электромагнитного клапана высокого давления, что влечет за собой снижение давления в контуре. Понижение давления вызывает закрытие топливной форсунки и прекращение впрыска.

Вся та точность, с которой осуществляется данный процесс, напрямую зависит от электромагнитного клапана. Если попытаться объяснить еще подробнее, то от момента окончания работы клапана. Этот момент исключительно определяется отсутствием или наличием напряжения на катушке электромагнитного клапана.

Избытки нагнетаемого топливо, которое продолжает нагнетаться до момента прохождения роликом плунжера верхней точки профиля кулачка, осуществляют движение по особому каналу. Окончанием пути для горючего становится пространство за аккумулирующей мембраной. В контуре низкого давления имеют место скачки от высокого давления, которые демпфирует аккумулирующая мембрана. Дополнительным является то, что данное пространство сохраняет (аккумулирует) накопленное топливо для наполнения перед следующим впрыском.

Остановка двигателя осуществляется при помощи электромагнитного клапана. Дело в том, что клапан полностью блокирует нагнетание топлива под высоким давлением. Такое решение полностью исключает необходимость в дополнительном остановочном клапане, который применяется в распределительных ТНВД, где осуществляется управление регулирующей кромкой.

Процесс демпфирования волн давления при помощи нагнетательного клапана с дросселированием обратного потока

Данный нагнетательный клапан (15) с дросселированием обратного потока после завершения впрыска порции топлива препятствует следующему открытию распылителя форсунки. Это полностью исключает такое явление, как дополнительный впрыск, являющийся результатом волн давления или их производных. Указанное дополнительное подвпрыскивание повышает токсичность отработанных газов и является крайне нежелательным негативным явлением.

Когда начинается подача топлива, тогда конус клапана (3) открывает клапан. В этот самый момент топливо уже нагнетается через штуцер, проникает в магистраль высокого давления и направляется к форсунке. Окончание нагнетания горючего вызывает резкий спад давления. По этой причине возвратная пружина с силой прижимает конус клапана обратно к седлу клапана. При закрытии форсунки возникают обратные волны давления. Эти волны успешно погашаются дросселем нагнетательного клапана. Все эти действия предотвращают нежелательное подвпрыскивание топлива в рабочую камеру сгорания дизельного двигателя.

Устройство опережения впрыска

Данное устройство состоит из следующих элементов:

  1. кулачковая шайба;
  2. шаровая цапфа;
  3. плунжер установки угла опережения впрыска;
  4. подводной и отводной канал;
  5. клапан регулировки;
  6. шиберный насос для подкачки топлива;
  7. отвод топлива;
  8. вход топлива;
  9. подвод из топливного бака;
  10. пружина управляющего поршня;
  11. возвратная пружина;
  12. управляющий поршень;
  13. кольцевая камера гидроупора;
  14. дроссель;
  15. электромагнитный клапан (закрытый) установки момента начала впрыска;

Оптимальный процесс протекания сгорания и лучшие мощностные характеристики касательно дизельного ДВС возможны только тогда, когда момент начала сгорания смеси происходит в определенном положении коленвала или поршня в цилиндре дизельного двигателя.

Устройство опережения впрыскивания выполняет одну очень важную задачу, которая заключается в том, чтобы увеличивать угол начала подачи топлива в тот момент, когда имеет место повышение частоты вращения коленвала. Данное устройство конструктивно включает в себя:

  • датчик угла поворота приводного вала ТНВД;
  • блок управления;
  • электромагнитный клапан установки момента начала впрыска;

Устройство обеспечивает тот самый оптимальный момент начала впрыскивания, который идеально подходит режиму работы двигателя и нагрузке на него. Происходит компенсация временного сдвига, который определяется сокращением периода впрыска и воспламенения при увеличении частоты вращения.

Данное устройство оснащается гидравлическим приводом и встраивается в нижнюю часть корпуса ТНВД таким образом, чтобы располагаться поперек продольной оси насоса.

Работа устройства опережения впрыска

Кулачковая шайба (1) осуществляет вход шаровой цапфой (2) в поперечное отверстие плунжера (3) таким образом, что поступательное движение плунжера трансформируется в поворот кулачковой шайбы. Плунжер в центре имеет регулировочный клапан (5). Данный клапан осуществляет открытие и перекрытие управляющего отверстия в плунжере. По оси плунжера (3) находится управляющий поршень (12), который нагружен пружиной (10). Поршень отвечает за положение регулировочного клапана.

Электромагнитный клапан установки момента начала впрыскивания (15) находится поперек оси плунжера. Электронный блок, управляющий ТНВД, осуществляет воздействие на плунжер устройства опережения впрыска посредством данного клапана. Управляющий блок подает в непрерывном режиме импульсы тока. Такие импульсы характеризуются постоянной частотой и переменной скважностью. Клапан изменяет давление, которое оказывает воздействие на управляющий поршень в конструкции устройства.

Регулирование количества подаваемого топлива

На приведённом ниже обзоре системы показаны датчики, на основании сигналов которых определяется количество подаваемого топлива Сигнал, поступающий от блока управления двигателя, преобразуется блоком управления топливного насоса в сигнал для электромагнитного клапана регулирования количества подаваемого топлива. Задачей регулирования количества подаваемого топлива является точная адаптация количества топлива к различным режимам работы двигателя.

Принцип действия: Процесс наполнения Если электромагнитный клапан регулирования количества подаваемого топлива открыт, топливо из внутреннего пространства насоса подаётся в камеру сжатия.
Впрыск Блок управления топливного насоса подаёт сигнал управления на электромагнитный клапан регулирования количества подаваемого топлива, клапан перекрывает подачу топлива. Все время, пока электромагнитный клапан закрыт, топливо сжимается и подаётся на форсунки впрыска. При достижении заданного блоком управления двигателя количества топлива электромагнитный клапан открывает подачу топлива из внутреннего пространства насоса. Давление падает; впрыск завершён.

При полной нагрузке двигателя объём топлива на каждый цикл впрыска составляет ок. 50 мм3. Это равно объёму одной капли воды.

На оборотах холостого хода на каждый цикл впрыска требуется ок. 5 мм3 топлива. Это соответствует размеру булавочной головки диаметром 2 мм.

Дополнительной задачей электромагнитного клапана регулирования количества подаваемого топлива является остановка двигателя. При выключении зажигания электромагнитный клапан открывается, сжатие топлива не происходит.

Рейтинг
( 2 оценки, среднее 5 из 5 )
Понравилась статья? Поделиться с друзьями:
Для любых предложений по сайту: [email protected]