Паровые машины, как и традиционные ДВС отличаются общим недостатком — возвратно-поступательные движения поршня должны преобразовываться во вращательные движения колес. Это и является причиной низкого КПД, высокого износа основных элементов.
Многие инженеры пытались решить эту проблему, придумав двигатель внутреннего сгорания, все детали которого бы только вращались. Однако изобрести такой агрегат смог механик-самоучка, не окончивший ни высшего, ни даже средне-специального учебного заведения.
Немного истории
В 1957 году малоизвестный механик-изобретатель Феликс Ванкель и ведущий инженер NSU Вальтер Фреде стали первыми, кто решил установить роторно-поршневой мотор на автомобиль. «Подопытным» стал на NSU Prinz. Первоначальная конструкция была далекой от совершенства. К примеру, свечи приходилось менять практически после полной разборки агрегата. К тому же, надежность мотора оставалась под сомнением, а про экономичность можно было не упоминать.
После множества испытаний концерн занялся выпуском машин с традиционным ДВС. Однако первый роторно-поршневой DKM-54 мог продемонстрировать великий потенциал.
Именно так оригинальная разновидность ДВС получил свой шанс на внедрение в производство авто. В дальнейшем он постоянно дорабатывался, однако перспективы роторно-поршневого мотора уже тогда были очевидны. РПД входит в классификацию роторных моторов как один из 5 представителей линейки.
К 80-м годам 20 века роторные двигатели Ванкеля исследовались лишь японской компанией Mazda. Еще к этому мотору проявлял внимание ВАЗ. В СССР бензин стоил достаточно дешево, а такой агрегат имел достаточно большую мощность. Однако к 2004 году производство машин с таким двигателем прекратилось. Япония стала единственной страной, в которой продолжается разработка роторного двигателя.
Есть множество разновидностей роторных агрегатов. Единственное их отличие — поверхность корпуса и число выполненных на роторе граней. Различные компоновки таких моторов применяются в авто- и судостроении.
Преимущества двигателя
Основными преимуществами РПД Ванкеля являются:
- Более высокое отношение мощности к весу, чем у поршневого двигателя.
- Легче размещать в небольших машинных пространствах, чем эквивалентный двигательный механизм.
- Нет поршневых деталей.
- Способность достигать более высоких оборотов в минуту, чем обычный двигатель.
- Работа практически без вибрации.
- Не подвержен двигательному удару.
- Дешевле в производстве, потому что двигатель содержит меньше деталей
- Широкий диапазон скоростей, обеспечивающий большую адаптивность.
- Он может использовать топливо с более высоким октановым числом.
ДВС Ванкеля значительно легче и проще, с гораздо меньшим количеством движущихся частей, чем поршневые двигатели эквивалентной выходной мощности. Поскольку ротор перемещается непосредственно на большой подшипник на выходном валу, нет шатунов и коленчатого вала. Устранение возвратно-поступательной силы и наиболее сильно нагруженных и разрушаемых деталей обеспечивает высокую надёжность Wankel.
В дополнение к удалению внутренних возвратно-поступательных напряжений при полном удалении возвратно-поступательных внутренних деталей, учтановленных в поршневом двигателе, двигатель Ванкеля выполнен с железным ротором в корпусе из алюминия, который имеет больший коэффициент теплового расширения. Это гарантирует, что даже сильно перегретый агрегат Ванкеля не может «захватить», как это может произойти в аналогичном поршневом устройстве. Это существенное преимущество в плане безопасности при использовании в самолётах. Кроме того, отсутствие клапанов повышает безопасность.
Дополнительным преимуществом РПД Ванкеля для использования в самолётах является то, что он обычно имеет меньшую фронтальную область, чем поршневые агрегаты эквивалентной мощности, что позволяет создать более аэродинамический конус вокруг двигателя. Каскадное преимущество заключается в том, что меньший размер и вес ДВС Ванкеля позволяет сэкономить затраты на строительство летательного аппарата по сравнению с поршневыми двигателями сопоставимой мощности.
Роторно-поршневые ДВС Ванкеля, работающие в соответствии с их первоначальными проектными параметрами, почти не подвержены катастрофическим отказам. РПД Ванкеля, который теряет компрессию, или охлаждение, или давление масла, потеряет большое количество, но всё-таки будет продолжать производить некоторую мощность, позволяя более безопасную посадку при использовании в самолётах. Поршневые устройства при тех же обстоятельствах подвержены захвату или разрушению деталей, что почти наверняка приведёт к катастрофическому сбою двигателя и мгновенной потере всей мощности.
По этой причине роторно-поршневые двигатели Ванкеля очень хорошо подходят для снегоходов, которые часто используются в отдалённых местах, где отказ двигателя может привести к обморожению или смерти, а также к самолётам, где резкий сбой может привести к крушению или вынужденной посадке в удалённых местах.
Недостатки
К недостаткам двигателя относятся непривычность для владельцев и механиков. Такой агрегат требует изменить многие привычки. К примеру, тормозить РПД не получится, а штурм подъемов «внатяг» обречен на неудачу. Компактный мотор обладает малой инерцией, чего не скажешь о массивных поршневых ДВС. При частыхзапусках-выключениях «забрасываются» свечи.Звук мотора некоторые автолюбители также относят к недостаткам.
Более серьезными являются органические изъяны роторно-поршневого агрегата. Во-первых, он обладает увеличенным расходом горючего. Это легко объяснить неоптимальной формой камеры, теряющей тепло через стенки. К тому же, мотор «съедает» достаточно много масла. Срок эксплуатации Ванкеля ниже, чем у стандартного ДВС —роторные уплотнениярегулярно изнашиваются.
Значительная роль отведена жесткости внешней характеристики роторно-поршневого мотора. Для управления машиной с таким двигателем требуется достаточно часто манипулировать рычагом коробки передач. Это объясняется тем, что необходим короткий передаточный ряд и увеличенное количество передач.
Идеальным вариантом является монтаж вариатора. Однако на спорткарах автоматы не приживаются, а для авто семейного типа требуется больше экономичности.
Недостатки РПД схожи с недостатками двухтактных поршневых агрегатов. Интересно, что вылечить это можно одними и теми же способами. Увеличенное потребление топлива сбивается непосредственным впрыском, нехватка эластичности — установкой изменяемых фаз. Это повышает экономичность и управляемость. Также для повышения эластичности меняется конфигурация трубопроводов. Такие изменения и были выполнены на моторе Mazda RX-8.
Принцип работы
Ротор имеет треугольную форму, с каждой стороны имеет выпуклую форму, которая выполняет функцию поршня. В каждой стороне ротора имеются специальные углубления, обеспечивающие большее пространство для топливно-воздушной смеси, тем самым повышают рабочие обороты двигателя. Вершина граней оборудована маленькой герметизирующей перегородкой, которая способствует выполнению каждого такта. С двух сторон ротор оснащен уплотняющими кольцами, которые формируют стенку камер. Середина ротора оснащена зубьями, при помощи которых осуществляется вращение механизма.
Принцип работы двигателя Ванкеля полностью отличается от классического, однако их объединяет единый процесс, состоящий из 4-х тактов (впуск-сжатие-рабочий ход-выпуск). Топливо попадает в первую образуемую камеру, во второй сжимается, далее ротор вращается и сжатая смесь воспламеняется свечой зажигания, после рабочая смесь вращает ротор и выход в выпускной коллектор. Главный отличительный принцип состоит в том, что в роторно-поршневом моторе рабочая камера не статическая, а формируется движением ротора.
Как работает
Работает двигатель Ванкеляпо принципу, который достаточно просто объяснить даже несведущему в механике человеку. Агрегат обладает минимумом деталей, что позволяет быстро понять, какие системы задействуются в определенные промежутки времени.
Поршень двигателя в РПД заменяется ротором с 3 гранями, который передает силу давления сгораемых газов на вал эксцентрика.
Статор обладает эпитрохоидальной конфигурацией внутренних поверхностей. Он отличается высокой износостойкостью, поскольку имеет специальное покрытие. В вершинах ротора находятсяуплотнения, а на поверхности статораимеются выемки — они являются своеобразными камерами, в которых происходит сгорание. Вал вращается на специальных подшипниках. Они помещены на корпус. Также валоснащенэксцентриком — на нем и вращается ротор.
Шестерня вмонтирована в корпус. Она сцеплена с шестерней ротора. Взаимное действие этих шестерен создает движение ротора. Это позволяет образовать 3 камеры, которые постоянно изменяют свой объем.
Отношение передач шестерен равно 2:3, что обеспечивает один оборот вала за поворот ротора на 120 градусов. Когда ротор совершает полный оборот,все камерывыполняют четырехтактный цикл. Сгораемые газы действуют на эксцентрик вала через ротор — так возникает крутящий момент.
Между ротором и статором имеется 3 камеры. Впуск происходит, когда одна из вершин ротора начинает пересекать впускное отверстие для впрыска топлива. Объем камеры увеличивается, что заставляет смесь ее заполнить. Следующая вершина закрывает окно. Как и поршень двигателя традиционного исполнения, ротор сдавливает рабочую смесь перед воспламенением.
Она сжимается, при наибольшем сжатии в камере возникает искра. В результате осуществляется рабочий ход. После выпускное окно под давлением отработавших газов открывается, и они покидают камеру.
При одном обороте ротора двигатель совершает 3 цикла — это делает ненужным применение уравновешивающих устройств.
В рабочем процессе есть слабые звенья. Первое — повышенная нагрузка на уплотнения, а второе — избыток динамического перекрытия фаз.Не является оптимальной и конфигурация камеры сгорания. Однако есть и положительный момент — если повышать обороты, скорость распространения факела пламени увеличивается быстрее, чем перетекает топливная смесь.
Это позволяет применять для РПД бензин с пониженным октановым числом. Принцип работы Ванкеля достаточно прост, что в свое время привлекло к изобретению внимание многих производителей авто.
Конструктивные особенности двигателя Ванкеля
Теоретическая форма ротора РПД Ванкеля между фиксированными углами является итогом уменьшения объёма геометрической камеры сгорания и увеличения степени сжатия. Симметричная кривая, соединяющая две произвольные вершины ротора, максимальна в направлении внутренней формы корпуса.
Центральный приводной вал, называемый «экс, проходит через центр ротора и поддерживается неподвижными подшипниками. Ролики движутся на эксцентриках (аналогично шатунам), встроенным в эксцентриковый вал (аналогично коленчатому). Роторы вращаются вокруг эксцентриков и совершают орбитальные обороты вокруг эксцентрикового вала.
Вращательное движение каждого ротора на собственной оси вызвано и регулируется парой синхронизирующих передач. Фиксированная шестерня, установленная на одной стороне корпуса ротора, входит в кольцевую шестерню, прикреплённую к ротору, и обеспечивает то, что ротор движется ровно на 1/3 оборота для каждого оборота эксцентрикового вала. Выходная мощность двигателя не передаётся через синхронизаторы. Сила давления газа на роторе (в первом приближении) идёт прямо в центр эксцентриковой части выходного вала.
РПД Ванкеля фактически представляет собой систему прогрессивных полостей переменного объёма. Таким образом, на корпусе имеется три полости, все повторяющие один и тот же цикл. Когда ротор вращается орбитально, каждая его сторона приближается, а затем удаляется от стенки корпуса, сжимая и расширяя камеру сгорания, подобно ходу поршня в двигателе. Вектор мощности ступени сгорания проходит через центр смещённой лопасти.
Двигатели Wankel, как правило, способны достичь гораздо более высоких оборотов, чем те, что с аналогичной выходной мощностью. Это связано с гладкостью, присущей круговому движению, и отсутствием сильно напряжённых частей, таких, как коленчатые и распределительные валы, или шатуны. Эксцентриковые валы не имеют ориентированных по напряжению контуров коленчатых.